LECTURE NO 29

Topics

- displacement current,
- Maxwell's equation in final form

In the previous section, we have essentially reconsidered Maxwell's curl equation for electrostatic fields and modified it for time-varying situations to satisfy Faraday's law. We shall now reconsider Maxwell's curl equation for magnetic fields (Ampere's circuit law) for time-varying conditions.

For static EM fields, we recall that

$$\nabla \times \mathbf{H} = \mathbf{J} \tag{9.17}$$

But the divergence of the curl of any vector field is identically zero (see Example 3.10). Hence,

$$\nabla \cdot (\nabla \times \mathbf{H}) = 0 = \nabla \cdot \mathbf{J} \tag{9.18}$$

The continuity of current in eq. (5.43), however, requires that

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \neq 0 \tag{9.19}$$

Thus eqs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We must modify eq. (9.17) to agree with eq. (9.19). To do this, we add a term to eq. (9.17) so that it becomes

$$\nabla \times \mathbf{H} = \mathbf{J} + \mathbf{J}_d \tag{9.20}$$

where J_d is to be determined and defined. Again, the divergence of the curl of any vector is zero. Hence:

$$\nabla \cdot (\nabla \times \mathbf{H}) = 0 = \nabla \cdot \mathbf{J} + \nabla \cdot \mathbf{J}_d \tag{9.21}$$

In order for eq. (9.21) to agree with eq. (9.19),

$$\nabla \cdot \mathbf{J}_d = -\nabla \cdot \mathbf{J} = \frac{\partial \rho_v}{\partial t} = \frac{\partial}{\partial t} (\nabla \cdot \mathbf{D}) = \nabla \cdot \frac{\partial \mathbf{D}}{\partial t}$$
(9.22a)

or

$$\mathbf{J}_d = \frac{\partial \mathbf{D}}{dt}$$

(9.22b)

Substituting eq. (9.22b) into eq. (9.20) results in

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

(9.23)

TABLE 9.1 Generalized Forms of Maxwell's Equations

Differential Form	Integral Form	Remarks
$ abla \cdot \mathbf{D} = ho_v$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} \rho_{V} dV$	Gauss's law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	Nonexistence of isolated magnetic charge*
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{S}$	Faraday's law
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{L} \mathbf{H} \cdot d\mathbf{l} = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$	Ampere's circuit law